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Abstract

The three!dimensional stress singularity at the top of an arbitrary polyhedral corner is considered[ Based
on the boundary integral equations\ the problem is reduced by the Mellin transform to a system of certain
one!dimensional integral equations[ The orders of stress singularity are spectral points of the integral
operators while angular distribution and intensity factors are found as residues at those points[ Numerical
results are obtained by means of the Galerkin discretization scheme using expansions in terms of orthogonal
polynomials with the proper weights[ Some of the results illustrating the order|s dependence on the elastic
properties and corner geometry for a wedge!shaped punch and a crack\ for an elastic trihedron and for a
surface!breaking crack are given[ Þ 0887 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

In two!dimensional "1D# elasticity\ a stress _eld near a corner point is of the form

t ½ Sci"8#r−gi\ 0 × Re g0 × Re g1 × = = = × Re gn × = = = \ r : 9

where "r\ 8# are the polar co!ordinates centred at the vertex and ci"8# are smooth functions[ This
form was obtained and investigated by Williams "0841#\ Karp and Karal "0851#\ Bogy "0857#\
England "0860#\ and Theocaris "0863# among others[ Power exponents gi depend on the angle
opening\ in particular\ when the corner degenerates into a thin slit\ there is well!known value
g0 � 9[4[

But in three space variables the situation is not resolved so easily[ For example\ when the crack
contour has a corner point\ the stress _eld in its vicinity is essentially three!dimensional "2!D# ðit
is a so!called singularity of {{conical type|| "Kondrat|ev\ 0857^ Bazant\ 0863# or a {{2!D singularity||Ł
and the results above become inapplicable[ In the case of an arbitrary polyhedral corner the
exponents cannot be found as the roots of algebraic eigenequations\ they are the spectral points of

� Corresponding author[ E!mail] evgÝkgu[kuban[su[



E[ Glushkov et al[ : International Journal of Solids and Structures 25 "0888# 0094Ð00170095

Fig[ 0[ Examples of the 2!D singular points] wedge!shaped punch\ crack\ and inclusion "0Ð2#\ surface!breaking cracks
"3#\ top of a cube "4#\ brick!out corner "5#[

the boundary value problems reduced to boundary integral equations "BIEs# or certain variational
eigenproblems[ Several examples of possible 2!D singularity points are given in Fig[ 0[

Depending on the number of variables to be discretised the methods of 2!D singularity extracting
can be subdivided into three groups]

"0# a direct volume discretisation "2!D FEM#^
"1# a separating out the r−g factor analytically and discretisation with respect to two spherical

angular variables^
"2# an application of the Mellin transform to the BIEs and discretisation with respect to only

angular polar variable connected with the wedge!shaped sides of a polyhedral vertex[

The _rst way is not too complicated analytically but leads to algebraic systems of about 09Ð19
thousand equations ðfor example\ 00\999 equations in the crack!surface intersection problem
considered by Becker and Schnack "0889#Ł\ i[e[ it required the use of supercomputers[ In the second
case\ from 499 "Abdei!Messiei and Thatcher\ 0889^ Ghahremani\ 0880^ Leguillon\ 0884# to 1399
"Matveenko and Minakova\ 0877# equations are dealt with and workstations are employed as
usual[ We have been developing the third approach "Babeshko et al[\ 0870\ 0878\ 0880^ Glushkov
and Glushkova\ 0877\ 0881^ Lapina\ 0881^ Glushkov et al[\ 0885#\ which involves rather com!
plicated prior analytical calculations\ but systems of about 09Ð29 equations are solved with personal
computers to obtain the same accuracy as above[

The _rst goal of the present paper is to give a general idea of the method and a review of the
numerical results obtained earlier for wedge!shaped punches and cracks\ and secondly\ to give the
recent results for the top of an elastic trihedron with one _xed side and for a surface!breaking
crack[
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1[ General scheme

1[0[ WienerÐHopf type inte`ral equations

Among the variety of 2!D singularity problems there is a common special case when a polyhedral
elastic volume is unfolded completely in a space or in a half!space so that all its sides lie in a plane[
For instance\ there are a wedge!shaped punch contacting with a half!space\ a wedge!shaped planar
crack or an inclusion "points 0Ð2 in Fig[ 0#\ including the interface ones located between two
dissimilar materials[ Those problems are reduced to the WienerÐHopf type integral equation in
the wedge!shaped area V] 9 ¾ r ¾ �\ −u ¾ 8 ¾ u "Fig[ 1#]

g gV
k"x−j\ y−h#q"j\ h# dj dh � f"x\ y#\ "x\ y# $ V "0#

k"x\ y# �
0

3p1 g g
�

−�

K"a0\ a1#e−i"a0x¦a1y# da0 da1 "1#

8
x � r cos 8

y � r sin 8

r � zx1¦y1 8
j � r cos c

h � r sin c

r � zj1¦h1 8
a0 � a cos b

a1 � a sin b

a � za1
0¦a1

1

"2#

with a homogeneous Fourier symbol of the matrix!kernel k] K"ta0\ ta1# � tpK"a0\ a1# or equivalently
K"a0\ a1# � apF"b# ðsee below eqn "05# with z � 9 for a punch and eqn "23# for a crack as examples
of KŁ[

From here on we shall use capital letters with arguments a0\ a1 to denote the Fourier transforms
with respect to x\ y]

Fig[ 1[ Wedge!shaped area V and polar co!ordinates[
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K"a0\ a1# � g g
�

−�

k"x\ y#ei"a0x¦a1y# dx dy\

Q"a0\ a1# � g gV
q"x\ y#ei"a0x¦a1y# dx dy\ etc[

whereas the Mellin transforms

Q"s\ 8# � MsðqŁ 0 g
�

9

q"r\ 8#rs−0 dr\

q"r\ 8# � M−0
s ðQŁ 0

0
1pi g

c¦i�

c−i�

Q"s\ 8#r−s ds

will be distinguished by dependence of parameter s and angular variables[
The Mellin transform Ms\ being applied to eqn "0# with respect to parameter r\ converts it\ owing

to the homogeneity\ into a one!fold integral equation relative to the Mellin transform of q]

g
u

−u

K"s\ 8−c#Q"s−p\ c# dc � F"s\ 8#\ −u ¾ 8 ¾ u "3#

where

K"s\ 8−c# � MsðkŁr−"s−p−1#

Q"s−p\ c# � Ms−pðqŁ 0 g
�

9

q"r\ c#rs−p−1r dr[

As is generally known from complex analysis\ an expansion of a function at the point r � 9]

f "r\ 8# ½ s
i

ci"8#r−gi\ r : 9

is determined by the analytical properties of its Mellin transform F"s\ 8#[ Namely\ gi � si are the
poles of F"s\ 8# and ci � res F"s\ 8# =s�si[ Thus\ to obtain power exponents gi for the q"r\ 8# expansion
as r : 9\ one can _nd the poles of Q"s\ 8#\ i[e[ the spectral points of integral operator eqn "3# in
the complex s!plane[

Equation "3# is discretised in line with Galerkin|s method or collocation scheme[ Substitution of
an expansion of Q"s−p\ c# in terms of certain basis functions vk"c#]

Q"s−p\ c# � s
�

k�9

tk"s#vk"c# "4#

into the integral equation and projection of the discrepancy upon the second basis "wl"8##�
l�0 leads

to an in_nite algebraic system]
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A"s#t"s# � f"s#

A � >alk>�
lk�9\ t � "t9\ t0\ t1\ [ [ [ #\ f � "f9\ f0\ f1\ [ [ [ #

alk � g g
u

−u

K"s\ 8−c#vk"c#wl"8# dc d8

fl � g
u

−u

f"8#wl"8# d8[ "5#

The spectral points si coincide with zeros of the determinant]

si] D"si# 0 det A"s# =s�si � 9[ "6#

With the shift s−p at the _rst variable of Q the desired orders gi � si−p[
As usual\ the expansion of function q itself is not so important for practical purposes\ however\

the required singular terms of the stressÐstrain _eld as r : 9 can be expressed explicitly as residuals
basing upon the corresponding integral representations of the _eld in terms of q or other auxiliary
functions ðsee below eqns "16#\ "27# and "32# as examples of the _eld expansionŁ[ The stress orders
gi with Re gi × 2:1 "Re gi � 2:1 if Im gi � 9# are impermissible because such stress terms cir

−gi yield
an in_nite strain!energy in the vertex vicinity "in the 1D case this occurs with Re gi × 0#[ Note\
that to take into account the contribution of all permissible poles and to cut o} the impermissible
ones\ the integration path of the inverse Mellin transform M−0

s must go vertically at the right side
of the strip of singularity\ leaving the permissible poles at the left and impermissible ones at the
right hand sides of the path[

An important property making the scheme practically executable and e.cient is a series rep!
resentation of the kernel with separated out angular variables[ For its derivation consider k in
polar co!ordinates "eqn "2##]

k"x−j\ y−h# �
0

3p1 g
�

9

ap¦0 g
1p

9

F"b#e−iarcos"8−b#eiarcos"c−b# db da[ "7#

For an isotropic elastic material elements of the matrix K"a0\ a1# depend on cofactors ap0
0 ap1

1 ap2\
p0¦p1¦p2 � p with integer exponents pi only[ Hence\ F"b#\ depending on cosp0 b sinp1 b\ is a _nite
linear combination of the exponents einb\ so that the elements of the kernel k may be expressed as
the linear combination of the integrals

In �
0

3p1 g
�

9

ap¦0 g
1p

9

einbe−iarcos"8−b#eiarcos"c−b# db da\ n � 9\ 20\ 21\ [ [ [ \ 2M[ "8#

Namely\ factor a0 in K"a0\ a1# is replaced by "I0¦I−0#:1\ a1
0 by "I1¦1I9¦I−1#:3\ a0a1 by "I1−I−1#:3i

and so forth[
Integrals in eqn "8#\ in turn\ are reduced to the following series]

In �
in

1p
einc s

�

m�−� g
�

9

Jm"ar#Jm¦n"ar#ap¦0 da e−im"8−c# "09#

which has been derived using the equality "Bateman and Erde�lyi\ 0842#]
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eitsin8 � s
�

m�−�

Jm"t#eim8

"Jn"z# is the Bessel function#[
For an anisotropic material\ elements of F"b# in eqn "7# are smooth functions of b that also can

be expanded in terms of einb in a Fourier series[ Though in the general case the series are in_nite\
by virtue of smoothness they are fast!convergent and can be e}ectively truncated so that the kernel
is expressed in terms of a _nite number of the integrals In too[ As an example\ such an approach
has been used in the problem for a wedge!shaped punch moving across the surface of an elastic
half!space with sliding friction "Glushkov and Glushkova\ 0877^ Babeshko et al[\ 0878#[ The
motion leads to an anisotropy of the wave speeds in the local moving co!ordinates[

Hypersingularity of the kernel k is re~ected in the divergence of integrals "8# and series "09# in a
classical sense[ However\ since k is an integrand\ all operations with such representations carried
out in the framework of the scheme described\ including application of the Mellin transform\ are
strictly justi_ed similarly as the use of the generalised functions "Schwartz\ 0849Ð0840# "in fact\
K"a0\ a1# is a matrix!symbol of a pseudodi}erential operator "Taylor\ 0870##[

Based upon the equality "Ditkin and Prudnikov\ 0863#

MsðJm"ar#Ł � a−s1s−0G 0
m¦s

1 1>G 0
m−s¦1

1 1
one can derive from eqn "09#

MsðInŁ � rs−p−1 ineinc

1p
s
�

m�−�

`m"s\ n#e−im"8−c# "00#

`m"s\ n# � G0"s\ m#G1"s\ m¦n# ½ O"mp#\ m : �

G0"s\ m# � G 0
m¦s

1 1>G 0
m−s¦1

1 1\

G1"s\ m# � 1pG 0
m−s¦1¦p

1 1>G 0
m¦s−p

1 1[
By this means the application of the Mellin transform to eqn "0# leads to one!fold eqn "3# with

the kernel K expressed as the linear combination of series eqn "00# "without the factor rs−p−1

entered in Q"s−p\ c##\ and thereby after discretisation\ elements alk of system "5# may be represented
in closed algebraic "computable# form in terms of series

I
n �
in

1p $
0
1

i9"s\ n#¦ s
�

m�0

im"s\ n#% "01#

where



E[ Glushkov et al[ : International Journal of Solids and Structures 25 "0888# 0094Ð0017 0000

im"s\ n# � `m"s\ n# dm"n#¦"−0#n`m"s\ −n#d�m"−n#

×dm"n# � d0"m¦n\ k#d1"m\ l#

F

G

j

J

G

f

d0"m\ k# � g
0

−0

vk"c#eimc dc¹ \ c¹ � c:u

d1"m\ l# � g
0

−0

wl"8#eim8 d8¹ \ 8¹ � 8:u

[ "02#

An asterisk at d�m denotes the complex!conjugate value[ Note that for obtaining alk\ it is enough to
replace In by I
n in the kernel structure[

It should be pointed out that series "01# is already convergent despite the divergence of initial
series "09#[ The convergence is ensured by the required decrease of the dm factors[ Their behaviour
as m : � may be found as a contribution of the limit points 8¹ \ c¹ � 20 in the asymptotics of
oscillate integrals "02#[ The latter is dictated by the behaviour of the basis functions at the limit
points\ i[e[ it depends on the proper choice of orthogonal polynomials as vk"c# and wl"8#[ In the
general case they are Jacobi polynomials]

vk"c# � "0−c¹ #d0"0¦c¹ #d1P"d0\d1#
k "c¹ # "03#

with the weight "0−c¹ #d0"0¦c¹ #d1 describing the required behaviour of the unknown q"r\ c# at the
edges c:u � 20\ such as the square!root behaviour "u1−c1#0:1 of the crack opening displacement
"c[o[d[# for a wedge!shaped crack or the square!root singularity "u1−c1#−0:1 of the contact stress
for a punch[ This behaviour has to be found a priori from the corresponding 1D problems for
dihedral corners "elastic wedges#[

As an illustration\ in the simplest case of a wedge!shaped crack\ mode I\ integral eqn "0# is scalar
with K"a0\ a1# � ca "p � 0#[ Unknown q"r\ c# in this case is the normal component of the c[o[d[
Therefore\ one must take d0 � d1 � 0:1 in eqn "03#\ i[e[ Chebyshev polynomials of the second kind
as vk"c#[ As for projectors wl"c#\ the Legendre polynomials Pl"c¹ # "d0 � d1 � 9# are quite acceptable\
because the discrepancy expanded in terms of wl is a smooth function[ Such a choice in this example
assures decrease im ½ O"m−2:1# as m : �[

Note\ that although expansion in Fourier series "vk"c# � eikpc¹ # or in Legendre polynomials Pk"c¹ #
seems to be natural\ it would give im ½ O"m−0#\ as m : �\ i[e[ divergent series in the _nal
expressions for computing[ And conversely\ the divergence in the _nal representations indicates a
non!acceptable basis with incorrect behaviour at the edges[ Of even greater interest is the fact that
those basis functions also did not assure numerical stability of the results in the punch problem\
though the convergence was even faster than with the orders d0 � d1 � −0:1 required here[ Hence\
the numerical stability may serve as an experimental criterion for the proper choice of the weight
if there is not any other information on the behaviour of the unknown function at the limit points
"as an example\ at the line of the crack!surface intersection in Section 3[1#[

Convergence as O"m−2:1# is rather slow for e.cient computation\ therefore we accelerate the
series by extracting several terms of im"s\ n# asymptotics as m : � analytically and summing up
them explicitly with help of representations like "Ditkin and Prudnikov\ 0863#

s
�

m�0

eimu

mn
�

0
G"n# g

�

9

tn−0"eiu−e−t#e−t dt

0−1e−t cos u¦e−1t
[
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Fig[ 2[ Trihedral elastic volume stuck to a half!space[

1[1[ General case

The scheme described above remains valid in the general case when the sides do not lie in a
plane\ for example\ as is shown in Fig[ 2\ but\ naturally\ its realisation is a more challenging
problem in this case\ because\ instead of WienerÐHopf eqn "0#\ the BIEs have to be dealt with[
Usually the BIEs are derived from the volume integrals in accordance with the divergence theorem[
Those equations may be used in the context of this scheme too\ however\ with the polyhedral
volumes considered\ it seemed to be more convenient to employ integral equations derived as
superposition of displacement and stress _elds uij\ tij caused by surface loads qj in the elastic half!
spaces which surfaces coincide with the sides Sj of the polyhedron]

uij"xj# � Kijqj 0
0

3p1
Pij g g

�

−�

K"a0\ a1\ zj#Qj"a0\ a1#e−i"a0xj¦a1yj# da0 da1\

tij"xj# � Tijqj 0
0

3p1
Pij g g

�

−�

Tij"a0\ a1\ zj#Qj"a0\ a1#e−i"a0xj¦a1yj# da0 da1[ "04#

Here xj � "xj\ yj\ zj# $ Si is a point of the j!th half!space zj ¾ 9\ −� ¾ xj\ yj ¾ � in the Cartesian
co!ordinates centred at the vertex\ plane zj � 9 coincides with Sj "Fig[ 3#\ uij\ tij are in the coordinate
systems connected with Si\ Pij are conversion matrices from xj to xi co!ordinates\

K"a0\ a1\ z# � 2
a1

0az−1na1
0¦1a1 a0a1"az−1n# ia0a"az¦n0#

a0a1"az−1n# a1
1az−1na1

1¦1a1 ia1a"az¦n0#

ia0a"az−n0# ia1a"az−n0# −a1"az−n1# 3
eaz

1a2m
"05#

n0 � 0−1n\ n1 � 1"0−n#
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Fig[ 3[ Some sides Si and Sj of a polyhedron[ Connected with Sj spherical co!ordinates 8j\ gj of a point lying on Si are
determined uniquely as functions of 8i $ Si[

Tij"a0\ a1\ z# � "M0n
i
j =M1n

i
j= M2n

i
j #\ "06#

where ni
j are the outward unit normals to Si in the xj co!ordinates\

Mj � 2
s1j s0j r0j

s0j s2j r1j

r0j r1j r2j 3\ j� 0\ 1\ 2

smn\ rmn are components of the matrices

S � −2
a1"a1

1¦a1
0b# a0"a1

0¦a1
1b# ia0a1ab

a0"a1
0az¦c1# a1"a1

0az¦1na1
1# i"a1

0ab¦1na2#

a0"a1
1az¦1na1

0# a1"a1
1az¦c0# i"a1

1ab¦1na2# 3 ie
az

a2

b� az¦n0\ ck � 1"a1¦na1
k#\ k� 0\ 1

R� 2
a1

0z¦a a1a1z ia0az

a0a1z a1
1z¦a ia1az

ia0az ia1az a−a1z 3
eaz

a
\

n is the Poisson ratio and m is the shear module of the elastic material[
Reasoning from eqn "04#\ the displacement and stress _elds in a convex polyhedral elastic volume

V are expressed in the xi co!ordinate system as
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F

j

J

f

ui"x# � s
j

Kijqj\

ti"x# � s
j

Tijqj

x $ V[ "07#

As an example\ in the case of a trihedral corner with a given boundary displacement v0 at the
side S0 and loads p1\ p2 at the sides S1\ S2 "Fig[ 2\ point 4 in Fig[ 0# the superposition yields the
following BIEs]

F

G

j

J

G

f

s
2

j�0

K0jqj � v0\ x $ S0

s
2

j�0

Tijqj � pi\ x $ Si\ i � 1\ 2[

"08#

Though this representation is valid for a convex polyhedron only "its volume must belong to all
half!spaces# such a technique is quite applicable to a non!convex volume as well\ if it is divided
into convex parts and the sewing conditions between them are added[ Thus\ if it is supposed that
the trihedron considered is stuck to an elastic base\ we have to add to eqn "08# the equality for the
fourth underlying half!space z3 ¾ 9 "Fig[ 2#]

v3 � K33q3\ x $ S3 "19#

and the sewing conditions]

6
v0 � P03v3

q0 � P03q3

\ x $ S0 W S3 "10#

"v0 is the unknown here#[
Since the radial distance R � zx1

j ¦y1
j ¦z1

j is the same with any co!ordinate system xj centred
at the top\ the Mellin transform is also applicable to BIEs "08#Ð"10#[ In addition to greater
complexity of these equations in comparison with eqn "0#\ the main qualitative distinction is that
the kernel symbols of the Kij\ Tij operators contain an extra factor eazj\ so that the kernels are
represented in terms of integrals

0

3p1 g
�

−� g
�

−�

ap0
0 ap1

1 ap2eaze−i"a0"x−j#¦a1"y−h## da0 da1\ z ¾ 9[ "11#

This factor eaz\ connected with transmission of a surface loading into a depth of a half!space\
complicates the use of the Mellin transform and discretisation[ The basic integrals In for eqn "11#
ðanalogue of integrals "8# and "09#Ł take in spherical co!ordinates

8
x � R cos g cos 8\ R � zx1¦y1¦z1

y � R cos g sin 8\ r � zx1¦y1 � R cos g

z � R sin g\ −p:1 ¾ g ¾ 9

the following form]
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In"g# �
0

3p1 g
�

9

ap¦0 g
1p

9

einbe−iaRcosgcos"8−b#eiarcos"c−b#eaRsing db da

�
in

1p
einc s

�

m�−� g
�

9

ap¦0Jm"aR cos g#Jm¦n"ar#eaRsing da e−im"8−c# "12#

ðnotice that In"9# coincides with eqn "09#Ł[
Just as above\ components of the kernels of integral operators "04# are linear combinations of

series In"g# replacing a0\ a1 in the kernel!symbols "05#\ "06# in accordance with the rule indicated
under eqn "8#[

The key role in applying the Mellin transform to In"g# is played by the equality "Ditkin and
Prudnikov\ 0863#

g
�

9

Jm"aR#e−pRRs−0 dR � G"s¦n#"p1¦a1#−s:1P−m
s−0 0

p

zp1¦a11\ "13#

Pm
n"z# is the Legendre function[
It appears to yield the same representation of MsðIn"g#Ł and MsðzIn"g#Ł as eqn "00# but with

G0"s\ m\ g# � 10−sG"s¦m# 6
P−m

s−0"−sin g# for In

sin gP−m
s "−sin g# for zIn

instead of G0"s\ m# � G0"s\ m\ 9#[
Thus\ from eqns "07# we arrive at the Mellin transforms U"s\ 8\ g# � MsðuŁ and

T"s¦0\ 8\ g# � Ms¦0ðtŁ also expressed as one!fold integrals over polar angles cj $ Sj]

Ui"s\ 8\ g# � s
j

Pij g
uj

9

Kij"s\ 8j\ gj\ cj#Qj"s¦0\ cj# dcj\

Ti"s¦0\ 8\ g# � s
j

Pij g
uj

9

Tij"s¦0\ 8j\ gj\ cj#Qj"s¦0\ cj# dcj\ "14#

where 8j � 8j"8#\ gj � gj"8#\ uj are opening angles of the wedge!shaped sides Sj\ and components
of Kij\ Tij are performed as linear combinations of series MsðIn"g#Ł\ MsðzIn"g#Ł[

Consequently\ discretisation in terms of basis functions vj
k"cj# given at the sides Sj]

Qj"s¦0\ cj# � s
k

tjk"s#vj
k"cj#

leads with projectors wi
l"8l# to algebraic system "5# where tk � "t0k\ [ [ [ \ tNk # "N is a number of sides

Sj# and alk are block matrices 2N×2N composed of matrix!symbols Kij\ Tij of operators "14# with
I
n replacing MsðIn"g#Ł\ MsðzIn"g#Ł[ Arrays of the constants dj

0"m\ k# in the _nal series I
n remains as
before in eqn "02# ðindex j in dj

0 means that this array relates to the side Sj\ i[e[ cj $ ð9\ ujŁ\
c¹ j � "1cj−uj#:ujŁ\ but as for
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dij
1"m\ l# � g

0

−0

wi
l"8i#G0"s\ m\ gj"8i##e−im8j"8i# d8¹ i\ 8¹ i � "18−ui#:ui "15#

the di}erence is essential[ First\ since gj enters in G0\ the angle variables are not separated out from
s\ hence\ dij

1 are not constants relative to parameter s and must be recomputed at each step in the
D"s# roots search[ Second\ when i � j\ the co!ordinate angles 8j\ gj\ locating the point xj at the side
of projection Si in the co!ordinates connected with Sj\ are functions of the variable 8i $ Si "Fig[ 3#[
The speci_c dependencies 8j � 8j"8i#\ gj � gj"8i# are determined by a mutual arrangement of the
sides[ They are quite expressible in terms of trigonometric functions[

In other respects the general scheme remains as before[ Di.culties of dij
1 computing are not so

problematic as they might seem[ Moreover\ for a large m\ they are e}ectively approximated by
asymptotic expansions[

We would like to emphasise once again that\ _rst\ weight orders d0\ d1 of basis functions eqn
"03# depend on the angles between sides^ they have to be chosen as the main orders of 1D stress
behaviour at the tops of corresponding elastic wedges[ And\ second\ simultaneously with orders
of stress singularities gk � sk¦0\ the method yields explicit angular stress distribution in the volume
as R : 9]

ti"R\ 8\ g# ½ s
k

ci
k"8\ g#R−g

k \ "16#

where\ taking into account eqns "07#\ "14#\

ci
k"8\ g# � s

j

Pij g
uj

9

Tij"sk¦0\ 8j\ gj\ cj# res Qj"s¦0\ cj# =s�sk dcj[

Below there are numerical examples illustrating the method with several contact and crack
problems[ To gain a better understanding of the practical implementation of the method\ its
application to the wedge!shaped crack is given with additional speci_c details[

2[ Contact problems

2[0[ Wed`e!shaped punch

In the special case when the trihedron in Fig[ 2 is rigid\ it acts on the elastic base as a rigid
punch[ Only eqn "19#\ coinciding with eqn "0# with the kernel!symbol K"a0\ a1\ 9# eqn "05# and
q � "txz\ tyz\ sz#\ remains to be dealt with in this case[ With smooth contact the problem leads to
the scalar integral equation relative to the normal contact stress component sz as the unknown q
with K"a0\ a1# � −"0−n#:"ma#[

Dependence of the singular exponent g on the angle opening 1u in the scalar case was _rst
computed by Rvachev and Procenko "0857# and Bazant "0863#[ In the general case of an adhering
punch the _rst results were obtained asymptotically for a small u by Parihar and Keer "0868# and\
as the _rst realisation of the scheme described above\ were computed by Babeshko et al[ "0870# for
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the total range 9 ¾ u ¾ p "Figs 4 and 5#[ The case of friction contact\ including the moving punch\
has been investigated in Babeshko et al[ "0878# and Glushkov and Glushkova "0877#[ In addition
to the orders gi\ the plots of averaged factors "0:1u#Ðu

−u ci"8# d8\ obtained as the residuals at the
poles\ are given in the latter paper[

Values gi in Figs 4Ð5 are shown in the strip of singularity 9 ¾ Re g ¾ 2:1[ The vertical dashed
line in the _gures shows an approximate limit of u to which the asymptotic results of Parihar and
Keer "0868# accord with the plotted curves[ For the Poisson ratio n � 9[4\ system eqn "19# falls
into three independent scalar integral equations relative to contact stress components trz\ t8z\ sz[
Each equation yields a unique real value gi\ i � 0\ 1\ 2[ Since the curves gi"u# are varied continuously
with a gradual change of n\ in the _gures each of them is marked conditionally as these stress
components for n � 9[4 too[ When n � 9[4\ di}erent real values gi for sz and t8 merge together
and then split in two complex conjugate values g � a2ib at a mid range of u[ Since residuals
c"8\ z# � =c=eiargc at those poles are also conjugate\ each pair of the poles contributes in the contact
stress _eld as the oscillate singularity 1=c=r−a cos "b ln r−arg c# as r : 9[ Sketches of the pole traces
in the complex g!plane are given in the right side of the _gures[ For n � 9 the orders of sz\ t8

become the same and complex over the whole range 9 ¾ u ¾ p[

2[1[ Elastic trihedron with one _xed side

If\ in contrast to the case just considered\ the base is rigid and the trihedron is elastic\ one has
to reject eqn "19# and to deal with the system "08# in which v0 � 9[ Among the six angles of the

Fig[ 4[ Wedge!shaped punch bonded with a half!space[ Singular exponents gi vs angle opening u "n � 9[4 and 9[34#[
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Fig[ 5[ The same as Fig[ 4 "n � 9[2\ n � 9#[

trihedron "three opening angles ui of the sides Si\ and three angles p−bi between the sides Si and
Si¦0\ i � 0\ 1\ 2^ "S3 0 S0##\ only three are required to set the geometry[ Let these be u0 and
b0 � b2 � b "isosceles slopes# "Fig[ 2#[ When u0 � b � p:1 this is the top of a cube "point 4 in Fig[
0#^ if b : 9\ the trihedron is folded out in the half!space with a _xed surface sector just as in the
previous wedge!shaped punch problem[ Therefore\ exponents gi for the punch were used as initial
values for _nding the orders of singularity of a trihedron by tracing them numerically in the
complex plane by gradually varying the angles[

Thus\ Figs 6 and 7 show the results of such varying from the quarter plane punch "the circles
on the vertical axis# to the top of a cube] u0 � p:1\ 9 ¾ b ¾ p:1 "Fig[ 6#\ and further\ from the
trihedral corner to a dihedron "the quarter!space wedge# with free!_xed sides] b � p:1\ p:1 ¾ u0 ¾ p

"Fig[ 7#[ Along with the {{punch|| exponents gi\ i � 0\ 1\ 2 two additional orders g3\ g4 emerging
from g � 9\ b � 9 were found in the strip 9 ¾ Re g ¾ 2:1 by doing so[ In addition to the punch
case\ we used as a control the results of Matveenko and Minakova "0877# and Thatcher "0881# for
the top of the cube "the asterisk in Fig[ 6# and the well!known 1D order g � 9[178 for the elastic
wedge "the black dot in Fig[ 7#[ One can see in the _gures the value of Re g2 correlates well with
those results but the others seem to contradict them[ The matter of these extra branches has not
been investigated and explained properly yet\ although the fact that their values in the ultimate
case of the elastic wedge "Fig[ 7\ u0 � p\ branches 0\ 1\ 3# coincide with the orders 9[345\ 9[222\
9[9804 for the freeÐfree wedge with the supplementary angle opening 2p:1 may serve as the hint of
their nature[ It looks as if they resulted arti_cially from the used superposition technique eqns
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Fig[ 6[ Singularity orders at the trihedral vertex shown in Fig[ 2 "u0 � p:1\ rigid base# vs b from the half!space subjected
to the quarter!plane punch "b � 9# to the top of a cube "b � p:1#[ The asterisk marks the value obtained by Matveenko
and Minakova\ and by Thatcher[

Fig[ 7[ The same as Fig[ 6[ Further unfolding from the cube top "b � p:1\ u0 � p:1# to the dihedral corner "u0 � p#[ The
black dot is the 1D singularity order[

"07#Ð"08# that yields the spectral points not only for the convex intersection of the half!spaces but
for non!convex joins of the half!space pairs as well[ Apparently\ these extra poles\ being found as
the roots of denominator\ are removed by zeros of the numerators\ i[e[ they are redundant for the
_nal stress _eld at the top[ The usual BIEs with respect to unknown stress and displacement vectors
on the surface instead of the auxiliary functions qj promise to be free from those redundant poles[
To check this supposition this way has been trying now[
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3[ Crack problems

3[0[ Wed`e!shaped crack

Let us consider an elastic space −� ¾ x\ y\ z ¾ � containing in the plane z � 9 a wedge!shaped
crack V "in_nitely thin slit with the stress!free sides\ points 1 in Fig[ 0# −u ¾ 8 ¾ u\ 9 ¾ r ¾ �[
The crack is subjected to a given exterior stress _eld p which causes the more _eld t � "txz\ tyz\ sz#[
The latter is expressed through the unknown crack opening displacement

v"x\ y# � u¦"x\ y\ 9¦#−u−"x\ y\ 9−#\ "x\ y# $ V "17#

as the following convolution integral

t"x# � g gV
k0"x−j\ y−h\ z#v"j\ h# dj dh[ "18#

Here\ u2 are displacements for z − 9 and z ¾ 9\ respectively[
The unknown c[o[d[ v is determined from the integral equation

K0v 0 g gV
k0"x−j\ y−h\ 9#v"j\ h# dj dh � −p"x\ y\ 9#\ "x\ y# $ V "29#

that follows from the stress!free conditions on the sides[ The actual form of the kernel k0 is well!
known^ in the context of the o}ered technique it is derived easily starting from the Fourier
transform solutions

u2"x# � K2q 0
0
1p g g

�

−�

K2"a0\ a1\ z#Q"a0\ a1#e−i"a0x¦a1y# da0 da1 "20#

for upper z − 9 "u¦# and lower z ¾ 9 "u−# half!spaces subjected to a surface loading
q"x\ y# � t"x\ y\ 9#[ Matrix K− "Fourier transform of the half!space Green|s matrix# is represented
by eqn "05#\ K¦ is derived from K− by inverting the signs of the variable z and of the corresponding
components of q and u � "ux\ uy\ uz#[

The Fourier transform of eqns "17# and of "18#\ "20# with z � 9 leads to equalities]

V"a0\ a1# � U¦"a0\ a1\ 9#−U−"a0\ a1\ 9#

Q"a0\ a1# � K0"a0\ a1\ 9#V"a0\ a1#

U2""a0\ a1\ 9# � K2"a0\ a1\ 9#Q"a0\ a1# "21#

from which it follows

K0"a0\ a1\ 9# � ðK¦"a0\ a1\ 9#−K−"a0\ a1\ 9#Ł−0[ "22#

Namely\ for the homogeneous case considered
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K0"a0\ a1\ 9# �
m

1"0−n#a 2
a1−na1

1 na0a1 9

na0a1 a1−na1
0 9

9 9 a1 3[ "23#

The kernel structure "23# shows that system "29# and\ correspondingly\ eqn "5#\ in fact\ fall into
independent equations relative to tangential vx\ vy and normal vz components of the unknown
c[o[d[ v[ It should be noted\ that representation eqn "22# is valid for an interface crack between
dissimilar materials too\ but the system is not split in that case[ Nevertheless\ the scheme of Section
1[0 is also quite applicable[

In line with the scheme\ eqn "29# is brought by the Mellin transform to the equation ðsee eqn
"3#Ł]

g
u

−u

K0"s\ 8−c#V"s−0\ c# dc � −P"s\ 8#\ −u ¾ 8 ¾ u "24#

where

K0 �
m

1"0−n# 2
n9I9−n3I

¦
1 −in3I

−
1 9

−in3I
−
1 n9I9¦n3I

¦
1 9

9 9 I9
3\

I2
1 � "I12I−1#\ n9 � 0−n:1\ n3 � n:3\ "25#

In are series "00# without rs−p−1 entered in V^ p � 0[
Blocks alk of matrix A eqn "5# are matrices "25# with In replaced by I
n"l\ k# eqn "01# with

vk"c# � "0−c¹ 1#0:1P"0:1\0:1#
k "c¹ #\ wl"8# � Pl"8¹ #[ Like in the punch case above\ there are three singular

exponents gi found as roots of D"s# � det A in the strip of singularity[ Notice that limits of this
strip are determined by considering the stress t behaviour near the crack tip\ which connected here
with the unknown v by relation "18# or in the Mellin transforms as

T"s\ 8\ z# � g
u

−u

K0"s\ 8−c\ z#V"s−0\ c# dc "26#

"the kernel of eqn "24# K0 � K0"s\ 8−c\ z# =z�9#[
Correspondingly\

t"r\ 8\ 9# ½ s
�

i�0

ci"8\ 9#z−gi\ z : 9\ gi] Re gi ³ 2:1

ci � g
u

−u

K0"gi\ 8−c\ 9# res V"s−0\ c# =s�gi
dc[ "27#

In distinction to the contact stress\ all gi"u# are real over the whole range u[ Since the structure
of K0 eqn "23#\ poles of normal and tangential components of V contribute independently in sz

and txz\ tyz in the crack plane z � 9[ "With z � 9 matrix K0 is _lled and each pole contributes in all
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stress components[# This order of stress singularity of the normal component sz\ obtained by
Rvachev and Procenko\ and Bazant\ in fact\ is the same as for the contact stress under the smoothly
contacting punch\ with angle opening 1"p−u# "the scalar integral eqn "29# with respect to vz can
be converted into the equation relative to sz with the same kernel symbol K � c:a as for the smooth
punch#[ The order g2 is independent on the Poisson ratio n whereas {{tangential|| orders g0\ g1

depend on both u and n[ Factors ci for the normal stress component in the crack plane and
{{tangential|| singular exponents for g0\ g1 have been obtained in Glushkov and Glushkova "0881#
"see also Fig[ 8#[ With n � 9 the two di}erent values g0\ g1 in Fig[ 8 merge together yielding the
only curve g"u# coinciding with the {{normal|| order g2"u#[

It is worthy of note that in spite of extracting and summing explicitly the slow convergent
components of the series based upon asymptotics as l � mu : �\ it does not help when u : 9 and
l is not large for very large values of m[ As a consequence\ the real applicability of the approach
is limited from below by a certain value u9] 9 ³ u9 ³ u ¾ p depending on computational power
only[ The limitation is not too hindering for even with PC 275\ the two!digit accuracy has been
obtained for u × 9[94p[ Nevertheless\ the asymptotic methods like those developed by Parihar and
Keer "0868# or by Movchan and Nazarov "0889# supplement numerical schemes very well\ allowing\
in particular\ to control computation in the critical zones[ Thus\ we are thankful to Prof[ S[ A[
Nazarov who has pointed out an incorrectness of the numerical results in the vicinity of u � 9
shown in our paper "Glushkov and Glushkova\ 0881#[ The curves of Fig[ 8 recomputed for a small
u with longer series are already in accord with asymptotics derived by Movchan and Nazarov]

gi"u# � `iu
1:p1¦O"u2#\ u : 9\ i � 0\ 1\ 2

Fig[ 8[ Wedge!shaped crack[ Singularity orders of the shear stress components txz\ tyz in the crack plane vs angle opening
u "n � 9\ 9[2\ 9[4#[
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8
`0 � "1l1¦8lm¦4m1#:"l¦1m#"l¦2m#"l\ m are the Lame� constants#

`1 � m:"l¦m#

`2 � 0

"28#

and

gi"u# � 0−0:1"ln 1−ln "0−u:p##¦O"=ln "0−u:p#=−1#\ u : p[ "39#

3[1[ Surface!breakin` crack

If the crack front meets the surface of a sample "Fig[ 0\ points 3#\ the point of intersection is
essentially a polyhedral non!convex corner[ This problem "mainly the special case of the orthogonal
to the surface crack front# was considered by Folias "0864#\ Benthem "0866#\ Bazant and Estenssoro
"0868#\ Ghahremani "0880#\ Ghahremani and Shih "0881#\ and Leguillon "0884#\ among the others[
Recent numerical results "Glushkov et al[\ 0887# for any slope angle u between the front and the
surface ðhowever\ in the orthogonal to the surface z � 9 crack plane y � 9 "Fig[ 09#Ł are given
below in Figs 00 and 01[

The system of BIEs for this non!convex volume may be derived in the framework of the o}ered
general scheme by sewing BIEs like eqn "08# for the two right!angle trihedrons[ However\ with
such a special case as a crack\ essentially simpler integral equations are obtained basing upon the
crack _eld representation eqn "18#[ Combination of the crack stress _eld t of the form eqn "18#
and of the _eld {{re~ected|| from the surface z � 9 in the half!space leads to the following system]

g gV
ðk0"x−j\ z−z#¦k1"x−j\ z\ z#Łv"j\ z# dj dz � −p"x\ 9\ z#\ "x\ z# $ V[ "30#

Fig[ 09[ Surface!breaking crack geometry[
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Here\ symbol of matrix k0 results from eqn "23# by changing the rows and columns in accordance
with the new orientation of the crack plane y � 9 and co!ordinate axis re!designation "z : y\ etc[#]

K0 �
m

1"0−n#a 2
a1−na1

1 9 na0a1

9 a1 9

na0a1 9 a1−na1
0
3\

and

k1 �
0

3p1 g
�

−� g
�

−�

K1"a1\ a1\ z\ z#e−ia0"x−j#¦a"z¦z# da0 da1

K1 �
im

1"0−n# 2
"0\0# 9 "0\2#

9 "1\1# 9

"2\0# 9 "2\2# 3
"0\0#�i""0−n#"a3

0¦a3
1#:a¦"2−3n#"0−1n#a1

0a
1
1:a¦"2−3n#za1

0a
1
1

¦zð"2−3n#a1
0a

1
1¦1aa1

0a
1
1zŁ#:a1

"0\2#� a0""0−n#¦a1
1z:a¦zð"2−3n#a1

1:a¦1a1
1zŁ#

"2\0#�−a0""0−n#¦a1
1"2−3n#z:a¦zða1

1:a¦1a1
1zŁ#

"2\2#�i""na1
1¦"0−n#a1#:a¦a1

1z¦zða1
1"0¦1az#Ł#

"1\1#�i"3"−3n1¦1n¦0#a1
1¦"0−7n¦7n1#a3

1:a
1¦7n1a1

¦ð3n¦"2−3n#a1
1:a

1Ła1
1az¦zð"3n¦"2−3n#a1

1:a
1#a1

1a¦1a3
1zŁ#:a[

As before "Section 3[0#\ eqn "30# follows from the stress!free conditions on the crack sides y � 9\
"x\ z# $ V and actually is split into normal and tangential components too[

After the Mellin transformation in the polar co!ordinates

8
x � r cos 8

z � r sin 8

r � zx1¦z1 8
j � r cos c

z � r sin c

r � zj1¦z1

−u ¾ 8\ c ¾ 9

eqn "30# takes the form

g
9

−u

ðK0"s\ 8−c#¦K1"s\ 8\ c#ŁV"s−0\ c# dc � −P"s\ 8#\ −u ¾ 8 ¾ 9[ "31#

Components of the kernel k1 in this situation are expressed in terms of series

En �
0

3p1 g
�

9

a1ea"z¦z# g
1p

9

e−ia0"z−j#einb db da
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�
in

1p g
�

9

a1ea"z¦z# s
�

m�−�

Jm"ar cos 8#Jm¦n"ar cos c# da[

Hence\ the components of K1 also are series like In\ but\ by according equality "13#\ with the
Legendre functions P−m

m0
"−sin 8#P−m

m1
"−sin c# "m0 � s−0 or s\ m1 � 1−s or 2−s# instead of the

oscillate exponents e−im"8−c#[ The detailed speci_c representation of the _nal series and the matrix
A"s# of eqn "5# is given in Glushkov et al[\ 0887[

Along similar lines as in Section 3[0 the stress behaviour as R : 9 is expressed in terms of
residuals at the poles si of V"s−0\ c#[ In particular\ for the stress _eld in the crack plane y � 9 we\
reasoning from eqn "31#\ arrive at the expression

t"r\ 8\ 9# ½ s
�

i�0

ci"8#r−gi\ r : 9\ −p ³ 8 ³ −u "32#

where

ci"8# � g
9

−u

ðK0"si\ 8−c#¦K1"si\ 8\ c#Ł res V"s−0\ c# =s�si dc\ gi � si[

The chief surprise encountered in the course of eqn "31# discretisation was in the choice of the
constants d0\ d1 for the weight function of the basis vk"c¹ #\ c � u"c¹−0#:1 ðsee eqn "03#Ł[ While the
c[o[d[ behaviour at the crack front c � −u "c¹ � −0# is the well!known square!root decrease
resulting in d1 � 0:1\ its behaviour at the surface z � 9 "c � 9\ c¹ � 0# depends on the mutual
displacement of the crack side edges[ At _rst glance it may appear to be arbitrary\ i[e[
V"s−0\ c# ½ O"0# as c : 9 and\ hence\ d0 � 9[ However\ while d0 � 9 was quite acceptable for the
tangential case\ we could not get any stable numerical results for the normal component with
d0 � 9 but only with d0 � 0 "the latter was the next permissible value from the viewpoint of the
series convergence after d0 � 9#[ By this is meant that the singular term caused by the pole of the
normal component Vy is accompanied by the displacement eigenform with the closed upper edges
9 ¾ x ³ �\ y � 92\ z � 9[

In the _nal analysis the orders gi"u# has been obtained as zeros si of the truncated in_nite matrices
for the normal "Fig[ 00# and tangential "Fig[ 01# cases[ Figure 00 gives dependencies on the slope
u for the _rst singular exponent g0 and the next non!singular g1 of sy "in the crack plane y � 9#
obtained with truncated systems of size N � 4 for the Poisson ratios n � 9\ 9[2\ 9[3\ 9[38\ 9[4
"curves 0Ð4\ respectively#[ As the chief di}erence from the cases considered above\ the curve g0"u#
goes o} the strip 9 ¾ Re g ¾ 0 and at a certain slope angle u� reaches the border of permissibility
Re g � 0[4[ At this point the root g0 meets another root coming from above Re g × 0[4 and becomes
multiple[ In accordance with the residual technique such a multiple pole contributes to the stress
_eld an inadmissible term with a logarithmic factor r−0[4 ln r "if it is not eliminable\ of course#[ In
the range u × u� this multiple pole is split again into two complex conjugate values g � 0[42ib to
which an acceptable oscillate term with factor r−0[4 cos "b ln r−arg c# corresponds in expansion
"32#[

One more interesting fact is that all curves g0 intersect when u � 1p:2\ which means the singularity
order g0 � 9[48 at this angle does not depend on the elastic properties[
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Fig[ 00[ Orders g0\ g1 at the vertex of a surface!breaking crack vs slope u[ Normal stress component sy in the crack plane\
n � 9\ 9[2\ 9[3\ 9[38\ 9[4 "curves 0Ð4\ respectively#[

Fig[ 01[ The same for the shear stress components in the crack plane\ n � 9[4\ 9[2\ 9^ g0 "curves 0Ð2#\ g1 "3Ð4#[

Similar to the wedge!shaped crack\ g0 : 9 as u : 9 being held against the axis g � 9 with n :
9[4\ while g1 : 9 as u : p\ also approaching the axis from below\ and both merge completely at
n � 9[4[ Since the pole g � 9 is eliminable\ the sole exponent at n � 9[4 is combined from the
remaining parts of g0 and g1 in the strip −0 ³ Re g ¾ 0[4[

As for the tangential case "shear components txy\ tyz in the crack plane#\ the second exponent g1

also becomes singular for u greater than about p:1 "Fig[ 01#[ Here curves 0Ð2 relate to g0 and 3Ð5
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to g1 for n � 9[4\ 9[2\ 9\ respectively[ The circles in Figs 00 and 01 mark the exponents for the
orthogonal crack front u � p:1 given in Ghahremany "0880# that were used as a control[

4[ Conclusion

We have demonstrated the applicability of the Melling transform approach for extracting out
singular components of a solution near an arbitrary polyhedral vertex[ There are not any insuper!
able di.culties in extending this method for anisotropic media or multi!material joints[ The
method|s strength is low computational expense\ but it demands heavy priori analytical calcu!
lations[ As a worthy tribute\ these e}orts yield not only e}ective code but also a semi!analytical
explicit representation of the eigenmodes\ paving the way to creating so!called 2!D singular
elements\ that\ being implemented in the FEM schemes\ might be of great use in failure analysis
of complex!structured critical zones[
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